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SUMMARY

The report presents information on the stress problems in the
analysis of pressurized cebins of high-altitude aircraft not met with
in other fields of stress analysis relating to aircraft. The material
may be roughly divided into shell problems and plate problems, the
former being concerned with the curved walls of the cabin or pressure
vessel and the latter being concerned with small rectangular panels of
its walls, framed by stiffeners, but not necessarily plane.

INTRODUCTION

The analysis of pressurized cabins of high-asltitude aircraft pre-
sents perticuler stress problems not usually met with in other fields
of stress analysis releting to alrcraft. It is the purpose of the
present report to gather informetion on these problems and to make it
easily accessible to aircraft engineers, Some of the work in this field
is presented in references 1 to 10,

This report contains a choice of subjects teken from the theory of
plates and shells which is expected to be useful for the designer of
pressurized airplane casbins or similar lightweight pressure vessels.
This material may be roughly divided into shell problems and plate
problems, the former being concerned with the curved walls of the cabin
or pressure vegsel and the latter, with small rectangular panels of its
walls, framed by stiffeners, but not necessarily plane,.

As far as shell problems are concerned, some use has been made of
a manuscript for a book on "Stresses in Shells," which the author is
preparing. (See reference 3.) The prospect that this book will be
available somre time in 1952 makes 1t possible to discuss in the present
report several problems which are too complex to explain here in all
their mathematical details.

The pressurlzed cabin is a rather new element in the alrplane
structure and will, in all probability, undergo future development. In
view of this situation, no attempt has been made to present anything
like a textbook on the subject giving time-tested methods for solving
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various problems, but rather an attempt has been made to show the general
lines of thought which have proved to be useful and to give suggestions
for their application.

This investigation was carried out at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOLS
X,¥,2 rectangular coordinates
@,e angular coordinates
u,v,w displacements
a radius of cylinder or sphere
a,b sides of rectangle; axes of ellipse or ellipsoid
1 span of beam
t thickness of plate or shell
ho] pregssure difference between interior and exterior of cabin
XY,Z distributed load on shells (force per unit area of middle

surfece), in directions @, 6, and redial

N¢,N9,N normal forces in shells (force per unit length of section),
x
in direction #, 6, or x

My, My, Mg bending moment in plates and shells (moment per unit
length of section)

M twisting moment in plates (moment per unit length of
* section)

o normal stress

T shear stress

E elastic modulus

v Poisson's ratio
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SHELIL. PROBIEMS

Cylindrical Shell

Circular cylinder.- The fuselage of & high-azltitude passenger plane
is usuelly of circular cross section and is, for most of its length,
almost cylindrical. Some useful informastion regarding its strength may
be found, therefore, when a circuler cylinder closed at both ends by
some kind of bulkhead which permits the air pressure inside to be greater
than that outside (fig. 1) i1s considered. The pressure difference will
be called p.

For a homogeneous shell of thickness t the stresses produced by
this pressure are given by the well-known boiler formulas for hoop stress

0¢ and axial stress Oyt

o = pe/t

(1)
o, = pe/2t

The shell of a pressure cgbin is reinforced by rings and stringers,
which participate in carrying the load. The stringers will alweys be
spaced closely enough tc mske the distribution of the longitudinal stress
on the skin between them practically uniform., With the rings this may
be different., The limiting case, that is, that they too are closely
spaced, will he considered here,

In finding the stresses, start from the internal forces per unit

length of section acting in the shell., When & slice of length Ax =1
is cut out of the shell (fig. 2), the hoop force

N¢ = pa

is found, and when the force p:ta2 acting on each bulkhead is distributed
over the circumference 2ra of the cylinder, the longitudinal force

Ny = %-pa

transmitted by the unit length of & section right across the shell is
found,
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If the shell has no stiffeners, the stresses c¢ and o0y, are

found by dividing N¢ and Ny by the wall thickness +t, which, of
course, results in the boiler formulas (1). In the cabin shell are
rings of cross section AR at distance 1 from each other and stringers
of cross section Aj at an angular distance B (see fig. 3). If these

areas are distributed over the cross section of the skin, the effective
thicknesses

"
tg =t + AR
1
, (2)
A
L
ty, =t + —
X ad J

are introduced; however, the stresses 0¢ and o0y are not simply the
quotients N¢/t¢ and Nx/tx (see, e.g., reference 1). The reason for

this is apparent when one considers the fact that the skin is in a two-
dimensional state of stress and therefore for the same strain its stress
is different from that in the stiffeners. '

Let the stresses in the skin be c¢ and oy &s before, in the
stringers, o1, end in the rings, og. Then Hooke's law will yield the

following relations for the hoop strain €¢ and the longitudinal
strain €y

Ee¢ = c¢ - Vo,

= OR (3a)
Eey = 04 - Vo¢

= O’L (3b)

E Dbeing Young's modulus and V Poisson's ratio.

On the other hand, the definition of the internal forces is:

Ax

N¢ = tc¢ +-7— oR \
o (1)
Nx = tax + = o7,
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Solving the four equations (3) and (4) for the stresses,

_ tlg + V(t¢ - )N,
? (- ve)t¢tx + vet(t¢ +ty - t)

2ty + v (bg - t)

3

(l - v2)t¢tx + v2t (-b¢ + by - ‘b)

_ [(l - ve)tx + vz’gl Ng - vily

OR = (1 - v2)t¢tx + vab(t¢ + ty - 1—,)
_pa 2(1 - v@)ty - v(1 - )t
2 (- vE)tgty + V2t (b + ty - t)

o - t¢Nx+vtx_t)N¢

* o (a- V2)t¢tx + vet(t¢ F oty - 1)
18 tg + 2 (bx - t)

2 (1- v2)t¢tx + vzt(t¢ + by - t)
[(l - v2)t¢ + vat]Nx - ViNg
oL

i (1 - V2)t¢‘bx + V2t(t¢ + by - 1;).

I (1 'Va)t¢ - v(2 - v)t

g Pl e - )

(58a)

(5p)

(5¢)

(54)
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When the rings are far apart, these formulas are no longer appli-
cable. The problem must then be split, with the shel}l without rings
considered first and the influence of the rings introduced afterward
(see section entitled "Interaction between Shell and Rings"). When
there are no rings t¢ = t, and the formulas are simplified considerably:

%G =% (62)

_pa(l - 2v) . Vpa

Ox oy T (6b)

o[, &= ———— (6¢c)

It appears that o, 1s always smaller by a factor 1 - 2v than 1t
would be if it were obtained by simply distributing Ny over the whole
section. For the skin stress oy the factor depends on the ratio

Ap|adt, end if one writes

ax=k-g-ta—x

the factor k will be as shown in figure 4. For AL/aSt = 0 the
boiler formules are valid, and oy = O.50¢.'_For AL[aﬁt = 1.0, the
diagram shows oy = O.ha¢. The difference between these two values
of o, 1s small, but both are much less than the hoop stress., This

is very desirable since the over-all bending of the fuselage due to air
forces acting on the control surfaces produces additional stresses oy

vhich must be superimposed on the stress oy, due to cebin pressure.

Since the stringers take an important share of the axial load, it
is not good practice to interrupt them at the rings. Care should be
taken to insure that the forces carried by the stringers can go straight
through from one bulkhead to the other, or to the end of the cebin shell.

Double cylinders.~ The circular cross section is certainly the best
one, both for aerodynemic and structural reesons., However, it has some
practical disadventeges when used as a passenger cabin, Most serious
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is the fact that s horizontal floor must necessarily be built in,
requiring additionsl weight and lesving beneath it space which is not
easily used.

This situation is improved by a cross section which, with some
exaggeretion, is shown in figure 5. It consists of parts of two circles
and a straight horizontal tie between them.

Begin with a discussion of the weight of this structure, Under the

action of an internsl pressure p +the hoop stresses in the upper cylin-
der U¢l and in the lower cylinder c¢2 will be:

Og1 = Pall 5

Ofp = Pap[ts

The stress in the tie follows from the equilibrium st its ends (fig. 6):

c3t3 = °¢ltl cos ay + o¢2t2 cos oo

p(al cos ay + 8o cos 0.2)

If %y, top, and t3 sre chosen such that the three stresses are all
equal to the same value o given by the sllowable stress in the material,

_Pp
=521

ag

ql|d

t3 = %(al cOos o + 8o COS a,2)

The material invested in the structure is given by the area A,

of its metsllic cross section. The two circles contribute to it
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2tlal(:c - “’l) + 2tpap(n - cx.2) = %Ealz(“ - a,l) + 2&22(1( - a.g)]

and the tie contributes

_ P
2t3c = 2 -&-(al cos & + 85 COS o:2)c
Now
c =ay sin ay
= 8.2 sin (:L2
and hence

2t3c

2 %(alz cos oy sin ay + 322 cos o sin or.z)

%(alz sin 20 + a22 sin 2c2)

Summing up the three parts, the total metallic cross section is found
to be:

Am =2 %Elg(" - ap + % sin 2@1) + azg(ﬁ - o * % sin 2a2):|

On the other hand, the area of the hollow cross section Ay
describes the useful space in the fuselage. It is

Ay = a12<1r - ap + 12- sin 2@1) + agz(n - 0o + % sin 2@2)

It is seen that the ratio of the two areas

g

AmlAh =2z
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does not depend upon the particular choice of the dimensions of the
cross section. For a simple circuler cylinder of radius &a there is
obtained by similar reasoning:

Ay = 2nat

2x % a2

Ah = :1:8.2

and hence
=20 £
Am[Ah 23

as before, This indicates that for the same inside space the same
structural weight is required and one is freed from weight considera-
tions when choosing that combinstion of 815 85 O and %y which

seems best for other reasons The validity of this result is restricted
to cross sections where the tie acts in tension, end this is exactly the
configuration which is most interesting in aircraft construction. 1In
practical applications, of course, additional stresses will change the
picture to some extent, and the weight of different shapes will not be
equal, but the important fact remains that there is no first-order loss
or gain in choosing one or another of the sections compared.

Interaction between Shell and Rings

Bending of a cylindrical shell.- If the rings are not spaced closely

enough to be considered as part of an anisotropic shell, the problem
illustrated by figure T must be treated. Cut the shell in the plane of
the ring and at its connection with the ring. The pressure p applied
to the shell will lead to a hoop strain e¢ which may be found from

Hooke's law (3) and formulas (6a) to (6b) and comsequently will lead to
a radial displacement

WO = ae¢

p82<l _y2 v - 2v))

E \ t 2ty



10 ) ’ NACA TN 2612

The ring receives no load and, therefore, has no deformation. In order
to close the gap between the ring and the deformed shell, edd shearing
forces T per unit length of the edges. In the ring of cross section
AR these shearing forces produce the stress .

_ 2Ta
R = T
Ag
and hence the radial displacement
2Ta?
W = (7
R EAR

(More exactly, agq should be written instead of a2

radius of the center line of the ring.)

» Where a, 1s the

For the shell, the force T 1is a trensverse shear Q, which pro-
duces bending stresses. In order to find them, some details of the
theory of bending of an anisotropic cylinder must be developed. It is
necessary to consider only the internsl forces and moments shown on the
shell element in figure 8: The hoop force _N¢, the bending moment M,,

and the transverse shear Qx' They are all functions of x (fig. 7),
as 18 the radial deflection w.

The forces and moments must satisfy the conditions of equilibrium
of the shell element, They yileld two equations:

T - q (8a)

+ Ng =0 ' (8b)

which, after elimination of Q,, give the relation:

a

a2

2* + Ng =0 (9)
dx I .
The hoop force N¢ produces & hoop strain h€¢ which may be obtained from
equations (3a) and (52) to (5c) with Ny = 0. This strain leads to &

radial displacement
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w=ae¢

by - V2 (tx - t)
Etty

N¢a
§g§
Dg

tx

The constant D¢ = Et s Which has the dimension of a force
2
ty - Vo (tx - t)
per unit length, is the extensional rigidity of the shell in the direc-
tion of the hoop forces. Figure 9 shows that, in the range of practical

interest, D¢ is only slightly greater than Et, and it is safe to say
w
Ng = Et £ (10)

The bending moment My produces a curvature d?w/dx2 of the generators.
If I is the moment of inerties of the cross section of a stringer and
the attached skin of width a8 divided by the distance a8 of the
stringers,

M, = EI = (11)

Here too the coefficient EI 18 slightly influenced by the fact that the
skin has a two-dimensional stress system, This refinement of the theory
will not be discussed here. There 1s another circumstance, perhaps even
more serious, which will also be neglected here: The centrold of the
section to which I is referred is not exactly &t the distance a from
the axis of the cylinder but at a somewhat shorter distance. This
influence may be studied with a more generel set of equations, but since
the difference of the two radil is not great, it will probably not be

of first-order importance: however, it may be responsible for some
second~-order effects which otherwise might not be explained.

By introducing the expressions for N¢ and M, into equation (9),
the differential equation of the problem is obtained:

EI—+Et12=o (12)
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The general solution of this equation consists of four terms. Only
those which are symmetrical with respect to the plane x = 0O are
needed, They are:

KX KX . KX _._ KX
w = C; cosh — cos — + 02 sinh — sin —
- a a a a

. = 4 ta2

\JM
The boundaery conditions st x = 1/2 are that the slope dw/dx must be
zero and thet the deflection must assume a certain value wj. (This

will be discussed later.)

with

Introducing the solution here, C; and Cp are found and then

'
w o= L Ecosh B s8in B +
cosh B sinh B + cos B sin B
sinh B cos B) cosh 2—? cos -2% + (cosh B sin B -

ginh B cos B) sinh -E‘% sin ?Ez_}j

with

-



NACA TN 2612 _ 13

The internal forces can now be found easily. From equations (8a) and (11)
it follows that

(cosh B sin B cosh 2—‘:5 sin T +

_2a2ﬁ(cosh B sinh B + cos B sin B)

ginh B cos B sinh ﬂ;‘.ﬁ cos #)

For x = 1/2 this is the force T applied to the edge of the shell:

T = EtTwy coshEB - coszs (13)
" 228 cosh B sinh B + cos B sin B
Combining this with the preceding formula
cosh B 8in B cosh -2—‘73’-}5 gin giE+ sinh B cos B s:l.1:\l12—[§’E cos -2—5‘5

Q=T

cosh?B - coszﬁ

Introducing the solution w into equations (11) and (10) and expressing
w, by T
1 3

a%w
i

1 1 [ .
=T — cosh sin -
48 cosn®p - cos2B ( b sin B

sinh B cos B) cosh 2;&{ cas g;ﬁ -

(cosh B sin B + sinh B cos B) sinh 2—?’2{- sin 2%{‘
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and, adding the hoop force due to the pressure p,

_ Etw
Ng = pa+ ==
=pa-T 2af = Bcosh B sin B +
l coshEB - coseB
sinh B cos B) cosh 2%5 cos 2%5 +
(cosh B sin B - sinh B cos B) sinh 2—‘;”‘- sin ggﬂ

The magnitude of the shearing force T still has to be found. Write,
for abbrevietion, T = -kw;, where k is defined by equation (13).
Then the following deformastions are found: Under the action of the
internal pressure alone the shell has the deflection w, given at the

beginning of this section, and the ring, none. The additional load T
bends the edge of the shell back, producing Wy = -T/k, and the ring

has a positive displacement wgR = 2Ta?/EAR as was seen earlier,

Now, under the combined action of pressure p and shear T, the
radial displacement of shell and ring must be the same

From this equation
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Upon the introduction of W, &and k +this ylelds

p(l - ve _ v(i - 2\)))
2\ t 2ty

) ;L.+ B fcosh B sinh B + cos B sin B
'A'R Zt 25

(1h)

cosh?B - cOS

With the numerical value of T from this formula, one mey obtain from
the preceding formulas values for N¢ and Mx' The complete solution

of the mechanical problem of the lnteraction of the shell and the rings
is now obtained.

The shear depends on meny parameters, and no attempt has been made
here to represent formula (14} by diagrams. However, the distribution
of N¢ and M, along a generator of the cylinder depends essentially

on B. When B is small (closely spaced rings, heavy stringers), the
picture looks somewhat like figure 10(a), and the case where it is
adequate to represent the influence of the stringers by the effective
thickness tg as defined by equation (2) is approached. But when B

is great (ringe far apart, light stringers), the internal forces are
like those sketched in figure 10(b): In this case the influence of each
ring is locally restrained.

Floating skin.- From figure 10 it appears that there is not much

virtue in providing rings to help the skin carry the cabin pressure
because the skin alone can do that well enough and the rings only cause
trouble. The rings disturb the simple stress system considerably, and
the force 2T +transmitted from the shell to the ring produces a highly
undesirable tensile stress in the rivets which commect the skin to the

ring.

However, the rings are needed for many important purposes. They
help to Introduce the local loed gently into the shell, they support
the stringers sgainst buckling, and they stiffen the shell @s a whole
to prevent a collapse by large-scale buckling, The problem is, how
does one make the rings available for all these purposes without
introducing the forces T7T

The solution is the floating skin, Tts basic idea may be explailned
from equation (14). If the rings are very weak, AR —> O, the denomi-

nator of this formula becomes infinite, and T = O. The term E/AR
comes from wg, equation (7), and represents the deformability of the
ring by a radial locad T, or, more exactly, the radial displacement of
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those points where the ring is fixed to the shell (skin and stringers).
This deformabillity mey be increased easlly without weakening the ring.
It is only necessary to intersperse sn elastic element between the ring
proper end the shell (including stringers) as it is indicated by the
sketch, figure 11. Formula (7) must then be replaced by

= 2Ta? + WR*

EAg

oTa2
EAR

+ cT

¢ being an elastic constant depending on the shape and size of the
connecting link between ring and skin. In formula (14) it is then
necessary to write

2 , Ec
AR 5,2

instead of 2/AR and now there 1s the possibility of meking the denomi-

nator as great as desired. Of course, such a flexible connection is
only worth while if the denominator in equation (14) is appreciably

increased by adding the term Ec/ae.

Doors and Windows

When the cabin is under pressure, the door must, of course, be
closed, but it cannot be expected that the door panel will be very
efficient in transmitting hoop forces N¢ or longitudinal forces Ny

across the door opening. Both have to be carried around it by the door
frame, and thils disturbance of the smooth flow of forces will certainly
lead to sn increase in structural weight. In order to keep this increase
as small as possible, some detalls of the local stress system will have
to be studied.

Since the door needs a frame, it is reasonasble to extend the lateral
parts of this frame all around the shell as two of its rings. Outside of
the part of the fuselage limited by these rings the hoop force does not
meet with any obstruction. The problem is, what must be done with the
forces which are intercepted by the sill and the head of the frame? With
the usual dimensions of fuselages and doors these forces sre considersble.
A door frame strong enough to resist them would be a heavy structure,
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but worse than that, it would not accept the load. It would deflect in
the direction of the pull, and the deflection would lead to a decrease
of the pull.

It seems wise, therefore, to allow the shell itself to do that which
it can do so easily and to give the horizontal members of the door frame
only that stiffness which is required to press the door firmly against
it, that is, bending stiffness against radial forces., It is necessary,
then, to solve the following mechsnical problem (fig. 12): A cylindrical
shell extending over an angle o < 360° is limited by two circular rings
and by two straight end members. These end members have no rigidity
against bending in the tangential plane to the cylinder, but they have
enough cross section to be considered as inextensible for our purposes.
The shell is subjected to an internal pressure p.

The stress system set up under these conditions may be split into
two parts: One is a hoop force N¢ = pa, acting everywhere (also on the

straight edge) and resisting to the load p; the other ome is a system of
internal forces produced by an external load N¢ = -pa applied to the

edge members and canceling there the force pa of the elementary solution.

The task which is now to be dome is to find this second stress system.
In the theory of shells it is shown that the tangential load -pa cannot
be carried by the shell without resorting to bending stresses. There are
different methods of treating this bending problem; this is 8 simple one.
Although its application in this case may not be entirely legitimate,
1t will give & fair idea of what is happening, and that should be enough.

The problem may be reduced to & differential equation for the
bending moment M¢ (for the notations, see figs. 8 and 12; for more

details see reference 2, p. 139, or reference 3):

M¢.:

+ (2 + v)M¢" + (1 + 2v)M¢"“:: + 2(2 + v)M¢“:' +

+2M¢::

M¢ + VM¢"“".' + (l + V)2M¢""-‘ + (2 + V)M¢n-- + 1__]-;_\£M¢nu =0 (15)

Here dots indicate derivatives with respect to @, primes indicate
derivatives with respect to the dimensionless coordinate x/a, and k
is the shell parameter
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It may easily be verified that

- 0™ gin Mx
M¢ Ce sin -

is a solution of the differential equation, Here A 1s still an
arbitrary constant. Write

3 = D78
I

where n 1is a positive integer; the discussion will later be confined
to n=1,

When the solution is Introduced into the differential equation, it
is found thaet m must sstisfy a certain algebraic equation, After some
drastic simplifications (reference 4) it may be brought into the
following form:

2

(m2+l)2mh'+1—;—£l—)\.l"=0

This equation has the complex solutions

2
m =t -%t J%t i)@\’l ’kv zi‘\'i’\,tinzg (16)
= \|2& |28 - ve
£ = JZ Qt 3(1 v )

When any one of the eight complex values m 1s introduced into the
formula for M¢, one elementary solution is obtained. They all show a

variability in x-direction esccording to sin nnx/l. The same factor will
appear in the corresponding hoop forces N¢. When it is desired to use

these solutions to describe the stresses due to a uniform distribution

with

N¢ = -pa
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of the hoop force on the edge ¢ = 0, this distribution has to be
resolved into its harmonic components:

-pa=-&PE(sinE+£sin§-’E+lsin5ﬁ+. . )
n 1 3 l 5 1

The discussion will be confined here to the first term of this series
which will show the essential features of the stress pattern. Corre-
spondingly, set n = 1.

The set of eight elementary solutions which is obtained from the
eight possible values of m may be replaced by an equivalent set of
eight linear combinations, each of which is a product of an exponential
and a trigonometric function of kif or kof, where

ky = {8 cos 22,5°

ko = §\[@ sin 22.5°

Using a suitaeble set of boundary conditions to determine the constants C
with which these solutions must be multiplied, solutions for many cases
of loading and supporting the edge may be found. The full expression
for the bending moment M, and the values of the displacements u (in

x-direction) and w (radially outward) for the edge ¢ = O are given
here for three important cases:

1) Normal forces Ng = Fq s8in E, applied to a free (unsupported)
g =1 7
edge,

Fia, . -k - ko .
M¢=-QT(@+1)E (cos kof + |2 sin K2¢)-e cos ky@ SlnTﬂ-
(17a)
with the displacements at the edge @ = O,

Fla

u=-—({§+l)\]§§2-l-v)\.2:l cos—“—zx—

EtA3
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w_-m[{?+ )2+ (1 - 222) (2 + INBE + (2+ v - xa)xﬂ sin X

(2) Shearing forces N¢x = Fp cos “Tx-, applied to a free edge,

= Zzzgx\jr{ 7f cos Ko + (2+1 sin&2¢]

e'I€2¢ Eos kqf + (\{5 - 1) sin Kl¢]} sin -Eix— (17b)

with the displecements at the edge § = O,

u = - Foal \r2\|2 + \2 cos -’(Z—x

EtA2

- — \{9?,12 (2 +1-22%) e XX

(3) Combined action of & shearing force N¢x = F3 cos llx- and s

transverse force Q¢ = -AF3 sin -7‘2—", applied to a free edge

18 e LA ) ot () ]

e-K2¢ [(\l’é + 1) cos k1f - sin nl¢]} sin -’% (17¢)

with the displacements at the edge § = 0,

Ezi—g- \l—é\lz + \IE cos -7"‘3‘-

F a§
- 3 I—‘P_—- 3 2 X
Etx3 [2 + l + 1 - 2):] sin T
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Coming back to the original problem represented by figure 12, the
bending moment may be found by superposing the three solutions

(equations (17a) to (1T7c)) with appropriate values of the constants F,
Fo, and F3. These can be found from three boundary conditions at the
edge ¢ = O.

The first harmonic of the load pa shown in figure 12 is

N¢ = - =22 gin %?. In order to give N¢ this value, it is necessary
. ¢
to set
hpa
Fqi = = —
1 n

and this is the first of three conditions. The other two follow from
the deformation which the door frame imposes on the shell. Since the
cross section of this frame is assumed to be large enough to neglect
axial deformstions, u =0 at @ =0 for the shell. Another assump-
tion formulated previously is that the door frame will not deflect
very much in the w-direction. Therefore, w =0 at @ = 0 for the
shell,

When u and w are expressed as sums of the contributions of Fy,
Fp, and F3, according to the formulas given before, and set equal to

Zero, there are two linesr equations from which Fpo and F3 may be
found., The result is as follows:

Fs =

2 [ )t - (e ) e el -

T

1 - 2vA°2 + (1 + 2v)x€l

S EWK@+ 1)CL‘- (1-vx2)g2+1+2v12- (l+2\J)>»l‘:|

n§5x

The bending moment Mg due to the combined action of Fy5 Fp,
and F3 cen now be computed; going back through details of the theory
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which heve not been reproduced here, the hoop force N¢ and the longi-
tudinal force Ny 1n the shell can slso be found.

This has been done for an illustratlve example, where

14 x 106

v =0.3

The results are plotted in figure 13 over the circumference of a cross
section through the fuselage.

This diegram shows the following features which are of practical
interest:

(1) The disturbance produced by the door opening is restricted to
a rather small part of the shell. At an angular distance of 30° from
the edge it has practically vanished.

(2) The disturbance in the hoop force is without importance. It
is only slightly higher locally than in the undisturbed part of the shell.

(3) There sre conmsiderable stresses in the x-direction. The forces
Ny shown in the diagram sre, of course, additionsl to forces which may

exist from other causes. In particular, there is a zone of tensile stress
near the edge., When taken together with a compressive force in the
adjacent bar of the door frame, these stresses are comparable wlth bending
stresses in a beam of span 1, which receives the load N¢ = pa from the

undisturbed shell and is supported on the two rings shown in figure 12.

(L) The forces Ny are arranged in alternating tension and compres-

sion zones of approximately equal width and decressing Iintensity. The
width is such that in ususl fuselages it may be of the same order as the
distance between stringers. If stringers were placed at the zeros of N,

they would not influence our problem, This justifies the procedure used,
which 1s based on the assumption of an isotropic shell without stiffepers:

(5) If an additional stringer were provided right at the peak of Ny,
the stress distribution would, of course, be changed considerably. The
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essential effect of this measure would be beneficial: The stringer would
share the axisl load with the shell. Therefore, it may be suggested that
only the width of the first tension zone be determined, and a good stringer
be provided at its center, that is, at a distance of 900/“1 from the

door frame.

Bulkheads

General formulas for shells of revolution.- A cylindrical pressure

cabin must be closed at its end by & bulkhead. This bulkhead may be
constructed as a flat wall built up of vertical and horizontal beams and
a metal sheet., The beams have to transmit the air pressure by bending
stresses to the circumference of the bulkhead, from where it can be
transferred to the cylindrical cabin wall. Since the total air pressure
on the bulkhead is a force of considerable magnitude, a flat bulkhead
will result in a heavy construction, which should be avoided if possible.

The preferable shape of a bulkhead is that of & shell similar to a
boiler end. When the csbin has a circular cross section, such a bulk-
head will be a shell of revolution., As a basis for its stress analysis
a short account of the theory of such shells will be given here.

Figure 1t shows the middle surface of a shell of revolution; its
intersections with planes normal to its axis are psrallel circles, and
its intersections with planes containing the axis are all equal to each
other and are celled meridliens, At all points of a parallel circle the
angle ¢ between its plane and & tangent to the meridian has the same
velue and is therefore characteristic for this circle. The angle between
the plane of a meridian and the vertical will be called €. Since a
point of the shell is determined by the parallel and the meridian on
which it lies, the angles ¢ end 6 msy be used as coordinates on the
shell.

If the shell 1s cut along a parallel circle (fig. 15), the stresses
transmitted there can be found. As is usual in shell theory, equations
are not written for the stress but for the meridional force N¢ which

acts on the unit length of the circle. This force has the direction of
the meridian. The resultant of all the meridional forces acting on one
parallel circle is horizontal and of the magnitude N¢(sin @¢)2nr, and it

must belequal t0 the resultant R = nrap of the air pressure. Hence

Nf = B
g 2nr sin @

pr

- 2 gin a (188)
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When the shell is cut along a meridian, internal forces, that is,
the hoop forces Ng, are found, but they are not the same at all points

of the-meridian and, therefore, cannot be found as simply as N¢. A
shell element limited by two adjacent meridians and two adjacent parasllel

circles (fig. 16) has to be cut out. The sides of this element, which
sre parts of meridians, have the length r; d¢, where rq is the radius

of curvature of the meridian. The other two sides have the length r 46
(slightly different from each other because r is not the same on both
parallel circles). The equilibrium of the forces N¢(r de), Ne(pl &¢),

and the air pressure p(r d8)(r; df) in the direction of a normal to the
shell yields the equation

N¢(r a6)3¢ + Ng(ry df)36 sin ¢ = p(r ae)(r; ag)

The factor sin ¢ in the second term comes from the fact that the

resultant of the hoop forces lies in the plane of the parallel circle

and has to be projected on the normal to the shell, The equation may

be simplified to *

N N
—g + -2 sin g =71 >
r, T

Introducing N¢ from equation (18a) into this equation,

N, = —E5 (1 - r 18b
® " sin ¢( 2ry sin ¢) (160)

Equations (18a) and (18b) are sufficlent to find the internal forces N¢
and Ng when the shape of the shell is known., In order to permit the

best use of the space in the pressure cabin and in the fuselage at its
rear, an ideal bulkhead should be as flat as possible., This might lead

to a bulkhead designed to meet the cylindrical cabin wall at an angle,

as shown in figure 17(a). At the edge of the bulkhead equation (18a) will
yleld & certain value of the force N¢ which, of course, must have the

direction of a tangent to the meridian, Now this force camnot be trans-
mitted to the cylinder because this shell can only resist a force N,

having the direction of a generator. The difference, that 1s, the radial -
component of N¢, must be transmitted to a stiffening ring, It leads
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there to a compressive force of considereble magnitude. The corresponding
deformation, & decrease of the ring diameter, fits in no way to that of
the cylinder and no better to that of the bulkhead. Therefore, all the
trouble with bending stresses described in the section entitled "Bending
of a Cylindrical Shell" arises here again but in a much more serious
magnitude. The meridian of the bulkhead should, therefore, always end
with a tangent parallel to the generators of the cylindrical cebin wall.

At the center of the bulkhead r =0 and @ = O, and formulas 18(a)
and.18(b) become indefinite. If the meridian has a finite radius of
curveture ry at this point, them, in its vicinity the relation

r =rp sin ¢

holds. Introducing it into equations (18), they yield

N¢ = Ne = —2—- (lBC)

The tendency to make the bulkhead as flat as possible might lead to
a meridian with an extremely feeble curveture in the central part. In
the extreme case, for the curvature l/rl = 0, the stresses become infinite.

This is illustrated by figure 18. The meridian in the upper half is a
h, and the diagrams of the forces N¢

and Ng show the consequences of insufficient curvature of the shell.

The lower half of the figure shows how easily the situation can bhe
improved. Here the central part of the shell is replaced by & spherical
segment, and at once the stresses are reduced to a moderate magnitude.

biquadratic parsbola a3x =T

It may be mentioned that the meridian chosen for this example does
not fulfill the cordition of a smooth transition to & cylinder, and,
therefore, cannot be recommended even in the improved form, but the
essential effect shown in figure 18 is, of course, true for any other
shape wlth insufficient curvature.

Ellipsoidal bulkhead.- An oblate ellipsoid (fig. 19) used as a
bulkhead provides a good compromise between the desire to avoid dead
angles and dark corners and the necessity of providing a smooth flow
of forces. Relations between the radii r, r;, and ¢ may be found

from the equation of the elliptic meridisn., They are:
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8 sin ¢

(a2 sin?g + b2 c032¢)1/2

r =

a2b2

T 125 . 1P cos?g)3/2
(a sin“P + b< cos ¢)

When these are introduced into equations (18a) and (18b),

Ng = Pae
? 2(&2 sinf@ + b° cosa¢)l/2

pa2 b2 - (32 - b2) sin2¢
22 (a2 sin®f + b2 c032¢)1/2

Ng =

These formulas describe completely the stresses in the bulkhead. They
are not limited to a shell of constant thickness, hence the local

stresses may be found simply by dlviding by the locsl thickness t of
the shell:

U¢ = N¢/t

g = Ne/t

The stresses &t two points are of main interest: The center @ = 0°
and the edge ¢ = 90°, In the center is found a biaxial tension

0'¢= O'e

pa?
2bt

which determines the wall thickness. At the edge, the force N¢ trans-~

mitted to the cylindrical fuselage 1s independent of b eand is the same
for all ellipsoids (and for any other shape of bulkhead with smooth
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transition to the cylinder). The hoop force Kg depends largely on the

ratio a/b of the axes. If b = 0.707a it becomes zero, and if the
ellipsoid is still flatter the hoop force will be a compression. Since
it 1s desirable to build the bulkhead as flat as possible, this fact
deserves special attention. The compreegsive stress may be rather high,
but it is confined to a small zone. Figures 20(a) and 20(b) show two
examples of the stress distribution. In any case it will be wise to
provide for a stiffening ring at the connection between the bulkhead and
the fuselage.

The compressive hoop stress hes still another consequence which
needs considerstion. It produces an elestic deformation, which decreases
the diameter of the boundary circle of the bulkhead. On the other hand,
the diameter of the cylindrical well of the fuselage will increase in
the part in front of the bulkhead as & consequence of the positive hoop
stress in a cylindricel shell, and will not chenge at all in the part
behind the bulkhead where there is no internsl pressure., The deforma-
tions of the three shells look somewhat as shown in figure 21, Since
the shells are connected to each other, such & discrepancy cannot exist
in reality but will be prevented by a system of bending stresses in the
boundary zones of all three parts. In boilers and other pressure vessels
these bending stresses are rather serious and measns 0 avoid them are
desireble. In pressure cabins they may be of some minor Importance, but
it is certeinly better to eliminate them as far as possible.

The discrepancy between the two cylindrical parts i1s, of course,
unavoidable, but the edge deformation of the bulkhead should lie between
those of the two cylinders., That means, at least, that the hoop force
N¢ must be positive, A hemlsphere would fulfill this condition per-

fectly, but as a bulkhead it would lead to poor utilization of spece.

A Detter solution 1s to turn the ellipsoldal bulkhead with its convex
side toward the pressure cabin (fig. 22(a)). Then the previous for-
mulas are still appliceble, but the signs of all stresses are reversed.
That is desirable at the edge but certainly not In the center, where
compressive stresses create a buckling problem, This will be avoided
by the bulkhead shown in figure 22(b). The trouble with this shape is
that the membrane stresses st the sharp edge between the convex and
concave shells cannot make equilibrium with each other without the help
of a stiffening ring. This is shown by figure 23. The two meridionsal
forces N¢ shown there, one a tension and the other a compression, will
have the same horilzontal component and thus assure the axial eguilibrium
of the shell; but their radial components are both directed outward andg,
therefore, cannot equilibrate each other, If & ring is provided, they
may both be transmitted to it as shown, leading to a2 compressible hoop
force in the ring. But here a new difficulty arises. The hoop strains
of the three parts will not fit together and will sgain lead to bending
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stresses, It may be that they will turn out to be less serious in a
particular case, but at least they are now at & place where they do not
produce quilting of the surface of the fuselage.

Bulkheads with improved boundary effects.- A more promising method

to avoid excessive bending stresses would be to choose another shape of
the meridian. The fact thet a hemisphere gives Jjust what is wanted, an
edge deformation halfway between zero and that of the cylindrical cabin
wall, indicates that the meridian must begin with a curvature 1/a at
the edge. 1In order to make the bulkhesd flat, the curvature should then
increase and lster become very small when the center is approached.

This is schematically shown in figure 24, but the idea cannot be executed
in this form becesuse any discontinuity in the curveture again will pro-
duce those local bending stresses that are to be eliminated.

What is needed is a curve having the same general shape but & smooth
transition of curvature. Such a curve may be found in several ways.

One is a modification of the Cassinian curves (see also reference 5),.
Using the coordinates x &and r 1in a meridional plasne as shown in fig-
ure 24, the equation

(n2x2 + r2)2 - 2A2(n2x2 - r2) - B4 (19)

describes a Cassinian curve, if n = 1. With n > 1 the curves are
flattened and for 2 < n < 3 assume a reasonable shape, The parameters
A and B must be chosen so that for x = 0 the ordinate becomes r = a
and the radius of curvature is ry = a, This yields

2 _
A:an_._}.
n2 + 1
)+3n2"l
& —
n2 + 1

B =

The radius of curvature at the center of the bulkhead will then be

n3 3]:12-1
on? - 1§ n® + 1
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With these data the internal forces at the most interesting points
can be found. At the edge equations (18a) and (18b) with r = ry =2

end § = 90° give:

=22

N¢ 5
pa
Ay

At the center equation (18c) must be used and

N¢ =Ne

pa n3 3n2 -1

1s obtained.

But this 1s not enough. To he safe from surprises, one must have
the stress distribution along the meridian. It can be found by the
following procedure,

Assume x and from equation (19) find r, or vice versa, depending
on which will give the greater accuracy. Then compute

rt =g_r.
dx
=__n22 n.2x2 + r2 - A2
T p2x2 4 p2 4 A2
I _ = r\ll + (z1)2
sin @
u ==(.12r
dx2

I (r1)? _ n%x 422(n2x + rr')
X T r (n2x2 + T2 4+ A2)2
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r rr"

ry sin g 1+ (r’)2

Now formulas (18a) and (18b) may be applied.

This was done for n = 2 and the results shown in flgure 25 were
obteined., The hoop force Ny falls to zero and rises at the center of

the bulkhead toward the value previously mentioned. If n > 2 is
chosen, the hoop force will become negative, and very much so if n 1is
too great. This, of course, should be avoided.

Bulkhead for double cylinders.-~ In a double-cylinder cabin the two

cylinders mey have their bulkheads st different stations. Between the
two bulkheads the longer cylinder must have a full circulsr cross sec-
tion, end its intersection with the first bulkhead leads to a difficult
stress problem.

This situation is eased considersbly if 1t is possible to have both
bulkheads at the same cross section. Thelr shapes may then be chosen
such that they intersect in & plaene horizontal curve. This will be the
case when they are oblate ellipsoids with the ratio b:a = b':a'. They
mey then be derived by affine transformastion from two spheres as indi-
cated by figure 26.

A reinforcing ring must be provided along the intersection of the
two shells, It will now be shown that this ring, which has the shape
of a half-ellipse, will be stressed in its own plane only, and, with a
certaln exception, will even be free from bending stresses.

In the case of two spheres this is evident. Introduce coordinates
@, @', end 6 as shown in figure 26. If the two shells are inflated
by a pressure p, the internal forces will be

1 ..

in the upper shell and

t _ 1
N¢ = NG =3 pa__

in the lower. The forces Ny for g = 180° - o eand Ng' for
@' = 180° - o' act on the ring as shown in figure 27. Since
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g sin o = a' sin o'
=c

the vertical components N¢ sin ¢ and N¢' sin a' balance each other

and the horizontal components combine to a uniform radisl load, pro-
ducing a positive hoop force

F=oc % p(a cos a + a' cos a')

in the ring.

When there are two ellipsoids, the stress apalysis is not so simple.
One might think of using the solution given under the section entitled
"Ellipsoidal Bulkhead" for a single ellipsoid and of determining from it
the forces acting on the elliptic ring. But there is no reason to believe
thet the axial symmetry assumed in deriving that solution still exists
when part of the shell has been cut eaway and its symmetry thus destroyed.
The clue to the solution is the idea that the ring shall be free of
bending moments, and it has only to be shown that a solution with this
property exlsts, that it is unique, and how to f£ind it.

To fulfill this progrem, some notions of the theory of affine shells
are needed (for details see references 2, 3, and 5). They will be pre-
sented here as applied to the particuler problem to be solved.

In addition to the curvilinear coordinates @,6 and @*',0 on the
two spheres, two systems of rectangular coordinates are now introduced: x,
¥, and z for the ellipsoids and x¥, y¥*, and 2z* for the spheres. The
gimple geometrical relation between the two shells is represented by

x = nx*
"

y=¥

z = z¥

with n = bf/a. As curvilinear coordinates on the ellipsoids the
values of @ (or @') and 6 for the corresponding points on the
spheres are used. These coordinstes do not represent angles that can
be measured on the ellipsoids, but each pair of values @$,8 defines
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clearly one point on the shell, end this is all that coordinates are
expected to do. '

A shell element is cut out of the upper sphere by two meridians 6
end 6 + d6 and by two parallels ¢ and @ + df. It has the area

dA* = a2 sin ¢ ag ae

When it is projected on the plames (y*,z*), (z%,x*), and (x*,y*), the
projected areas are found:

dA,"” = da* sin @ cos 6

aa* sin ¢ sin 6

&
<<i:k
n

A" = dA* cos §

The element of the bulkhead shell is simply the projection of the
element dA¥ on the ellipsoid. Both have the same projection on the
yz-plane, but the other two projecticns are reduced in the ratio n:l:

dA, = dA*

aA™ sin @ cos 6

— *
dAy =n dAy

|
oo

dA* sin ¢ sin 6

dA, = n dAZ*

b qa*
s dA* cos ¢

When the ellipsocid is inflated by an internal pressure p, the force

acting on the element is p dA and has the rectangular components p dAy,

P dAy, and p dAy parallel to the axes x, ¥y, and 2z. This locad pro-
duces internal forces transmitted at the four sides of the shell
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element dA. On each side of the element this force lies in a tangential
plane to the shell and may be resolved into a normal and a shear com-
ponent. Something better can be done: Oblique components parallel to
the coordinste lines ¢ = Constant and 6 = Constant can be used.

These forces divided by the length ds¢ or dsg of the line element

are called Ng, Ng, and Ngg, as indicated in figure 28.

A simple relation between these forces and a certasin system of
internal forces N¢*, Ng*, and N¢9* in the sphere will -now be

established, These forces must, of course, lie on tangents to the
sphere, and they will be chosen in such & way that they have the same
projections on the-yz-plane as the corresponding forces in the ellipsoid.
Then both will have the same components in the directions y and g,
but the x-components of the forces N 1in the ellipsoid will equal =n
times the x-components of the forces N¥* in the sphere.

The forces N* of the sphere will be in equilibrium with a load
which has the same y- and z-components as that applied to the ellipsoid,
but 1/n times its x-component.

If the load components per unit ares dA¥ of the sphere are denoted
by px*, Dpy*, and Dp,¥,

1
Py 4AY = P dAy

P % dA* sin @ cos 6

P % dA* sin ¢ sin @

Pz* aA* = p aa,

= p % dr* cos ¢
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snd hence the loads per unit area of the surface of the sphere are
=p 2 sin g cos 6
b
* b L
Py =pgsin¢sin6 (20)

Pz*=P§C°5¢

-’

If the forces set up in the spherical shell by this load can be found,

it is only necessary to project them on the tangential plane of the
ellipsoid and to refer to the unit length of the elllipsoid's line element
and then the forces in the ellipsoidal bulkhead will be obtalned,

To make the stress anelysis for the sphere along conventional lines,

the loads given by equation (20) are transformed into the components
X*, Y*, and Z* as shown in figure 28:

xX*

—px* sin 6 + Py* cos 6

2 _ p2 '
=_____p(a b)sin¢sin29
2ab

Y* = (px* cos 6 + Py* sin 9) cos § - p* sin g

2 _ p2
- %—) cos § sin B(1 + cos 26)

N3
*
|

(px* cos 6 + p ¥ sin 6) sin ¢ + p,* cos ¢

2%)[21:2 + (32 - b2) s1n°@(1 + cos 29)]
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These expressions have the form

X* = X+ X,* sin 26

T =Y %+ Y,* cos 26

Z*¥ = 2% + Z,* cos 28

showing the harmonic comstituents of orders 0 sand 2.

The first term on the right 1s a load with rotationsl symmetry:
%" =0

v * = Eﬁffii:;gfl

o — cos ¢ sin ¢

* _ _E_[j 2 2 _p2 2 ]
Z, 5eD 2b< + (a b ) sin“g

Simple formulas, which will not be reproduced here, leasd to the internal
forces:

N¢* - N¢O* M
= bb
T2
Ng* = Ngo® - (21)

'EPTEDZ + (a2 - b2) sin‘?fz?_l

=0

3
C
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These formulas are valid for the upper sphere of radius a. For the
lower sphere it is necessary to write simply a', b', and ¢', instead
of a, b, and @, respectively.

The second harmonic of the load,

i p(a2 - b2)

X* =
2 2ab

sin ¢

N p(a2 _ b2)

Y, = S °os @ sin ¢

2t = B2 g

mey not be handled so easily. It leads to forces which depend also on
a sine or cosine of 20 and may be written as

N¢2* cos 26

=
1

N* = N92* cos 26

¥*
N¢92 sin 26

2
=N
D

"

* * *
The basic formules connectlng N¢2 ) N62 s and N¢92 with the load

components Xp*, Yo*, and Z,* may be found in the literature (refer-

ence 2, pp. 37 to 4k, or reference 3). They lead to & solution héving
two free constants for each of the spheres, One constant in each pair
mey be determined from the condition that the stresses are finite at

$ =0 and @' = 0. The other two are still to be determined. In this
wey are obtained
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N¢*_P(a2'b2) + C
o =
2b 2(1 + cos ¢)2

(a2 - v? c
N¢92* _Pagb )COS¢-

2(1 + cos §)2

2 _ w2
» . pe?-2) o c
2(1 + cos §)°

=2
a9)
no

n

for the upper shell and corresponding formulas for the lower, containing
another constant C'.

From these forces the ring receives a radial load
(N¢2* cos a-&N¢2*' cos aj cos 28, a vertical load

(N¢2* sin a - N¢2*' sin a') cos 26, and & shear load (N¢92* + N¢92*J) sin 26,

positive as shown in figure 29. The two free constants give the opportunity
of influencing these forces in such a way thet the ring is free of bending.
The first thing to do is to make the vertical load vanish at every point.
This yields the equation

N¢2* sin o - N¢2*' sin a' =0

When the expression Jjust given for N¢2* is introduced and some simple
geometric relations mentioned before are used, the following equeation
is obtained:

0 1
sin o 5 - o 8in o S = 0 (228)
(1 - cos a) (1 - cos a')

C

The second equation in C &and C!' must express the fact that there
is no bending in the plane of the ring. Under this condition the ring
has only an axial force F, which, of course, will be a function of @.
From the equilibrium of the ring element (fig. 30) two relations are
found:

c(N¢2* cos o + N¢2*' cos m') cos 26 = F

c(Ngoz® + Nggo*' ) sin 26 = 2
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From the first one it is possible to write F = Fp cos 28, and, elimi-
nating F, from both equations,

N¢2* cos o + N¢2*' cos a' + -;—(N;éez* + N¢92*') = 0

When the expressions found for the internal forces of both shells are
agaln Introduced and then simplified by appropriaste use of geometric
relations, this will yield the second equation for C and C':

c (L - 2 cos o) . o (L-2cosa') 3p(a2 - v°) sin (o + a')

2 2 b sin o' (220)
(L - cos a) (1 - cos a')

These two equations, when solved in genersal terms, yield

_ 3p(a2 - b2) (1 - cos 2)? sin (o + a')

b sin a + sin a' - 2 sin (o + a')

C

Introducing this into the formules for the internal forces, the following
expressions for the upper sphere are found: _

gox o ple -1 | 3 sin (o + a') (1 - cos a)2
g2 2b sin o + sina' - 2 sin (@ + a')| (1 + cos §)°

* _ . p(a2 - v2) 3 sin (o + a') (1 - cos @)
Ngo2" = 2b %OS g+ sina + sina' - 2 8in (o + a') (1 + cos §)2 r (23)

Ngo* = - fﬁffl:_ﬁfl cos2g + 3 sin (a + a') (1 - cos a)?
© 2b . sin o + sln a' - 2 8in (a +.a'){(1 + cos ¢)2

4

These and those in equations (21) are the forces set up in the
spherical shell by the fictitious load (20). The last step necessary
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is to find from these forces the resl forces in the ellipsoidal bulk-
head under the uniform air pressure p.

The center of the bulkhead has the coordinates $ = 90°, 6 = 0°,
The internal forces are here parallel to the yz-plane and, therefore,
are the same in the sphere and the ellipsoid:

N¢O* + N¢2* cos 0°

g

E+p(a2-b2) 14 E; sin (a+a'n(l- cos )2

2 2b gin o + sin a! - 2 sin (o + a?)

pa? . 3p(a2 - ’o2) Eain (e + a'ﬂ(l - cos c~,r,)“2
2b 2b sin o + sin a! - 2 sin (a + «t)

'NGO* + Nee* cosB 00

=
D
It

. 2
pa? ] 3p(a2 - b2) E:Ln (e + a'ZI(l - cos a)
2b 2b gin o + sin a! - 2 gin (a + at)

Ngo = Nggo* + Nggo™ sin O°

On the edge 6 = t90°, Here the force Ny has x-direction and
must be reduced by multiplying by n = b/a. The force N¢ is parallel

to the yz-plane; therefore, the forces on corresponding line elements
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of sphere and ellipsoid are the same but the lihe element is reduced
in the ratio b/a, hence the force per unit length of this element
increased by a factor a/b, The shear is zero. Thus on the edge of
the ellipsoid: '

a * (o]
-_E(N¢O* + N¢2 cos 180 )

g

_Dba Pa(ﬂe—be) 14 3 gin (a+at) (1 «cos cz)2
2 2b2 sin a+sin a'= 2 sin (a+at) (1+cos ¢)2
_p(2v®- da  3pa(e?-1?) sin (a+a') (1-cos a)?
ope ob2 sin a+sin a' -2 8in (a+a') (1+ cos ¢)2
b * o
Ne = E(Neo* + N92 cos 180 )
2 2 2
2 p(e2 - o 5
=z = 8in“g + cos“P +
2
3 sin (o + a') (L - cos a)

sin « + sin a! - 2 sin (a + at?) (1 + cos ¢)2

pa 3P(82 - b2) sin (o + a') (1 - cos a)?

2 2a sin @ + sin &' - 2 sin (o + a') (1 + cos ¢)2

An exemple for the distribution of these forces over the circumfer-
ence 1s shown in figure 31. In the top and bottom zones the forces are
rather uniformly distributed, but there are marked peaks at the junction
of the two ellipsoids., This fact indicates that stresses in shells
should be determined carefully.
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In 2ll the preceding formulas, the denominator
sina + sin a' -~ 2 sin (a + a')

appears. It may heppen that o and o' have such values that this
denominator is zero, in which case the formulas would yield infinite
stresses. This indicates that 1n such & case the combination of the
two spherical or ellipsoidal shells is capable of an inextensional
deformation and thaet rigidity can only be secured by giving the neck
ring sufficient rigidity against bending 1n its own plane. If plane
bending of the ring is to be assured, then equation (22a) between the
two constants C =2nd C' still must hold. The bending moment in the
ring then becomes independent of the choice of C. Equation (22b)
becomes useless and must be repleced by the condition that the internal
forces assume finite values, This leads to C = C' = 0.

The somewhat lengthy analysis of the double bulkhead has been
reproduced here not only becesuse of the particular problem under con-
sideration but as an example of two important features of thin shells:

(1) The fact that the stiffening ring along the intersection of
two parts of the shell is usually free of bending moments

(2) The use of affine relations for the solution of shell problems

Nose of Plane

General rules.- The nose of the fuselage may have so msny various
shapes that not much can be said in general about its stress analysis.
In high-speed plenes serodynemic consideration may lead to shaping the
nose as a perfect surfasce of revolution. If it is part of the pres-
surized cabin, it may be trested with formulas (18a) and (18b) for
stresses 1In such shells; if the cabin terminates in a bulkhead back of
the nose, all that has heen sald about the rear bulkhead is applicable.

The modern passenger plene usually has a nose which looks like that
shown in figure 32. The msjor part of it is a shell, but the smooth
surface is interrupted by many windows. In such cases a shell analysis
as described in the preceding sections will, in general, be too com-
plicated for practical purposes., As regards the stress analysis of such
structures, the following facts should be kept in mind:

(1) All large uninterrupted parts of the metal skin will act as
shells, whether they are fixed on a solid framework or only stiffened
by rings and stringers. The stiffeners which are connected to the shell,
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although absolutely necessary for the introduction of local loads and
as a buckling reinforcement, are obstructions to a smooth flow of stress
in the shell proper and lead to quilting and to tensile stresses in
rivets.

(2) All edges of such shell parts, for exsmple, along the windows,
must be stiffened by edge members. It is always advantageous to shape
these edge members after plane curves, With rare excepiions they will
not then be subjected to bending in space, but they must offer resistance
to bending in thelr plane and require the corresponding rigidity, bracing,
and support.

(3) There is no need for meking cross sections circular. Any curved
ghell can resist an internsl pressure, but, of course, the stress dis-
tribution will be less uniform and may easily have local zones of com-
pression if the cross sections are far from clrcular.

(k) Areas of extremely low curvature should be avoided. Membrane
shell theory leads to extremely hilgh stresses in such parts and, owing
to these stresses, the panel bulges out, thus increasing the curvature
and reducing the stress. In addltion this bulging invariably leads to
some plastic deformation at the edges of the panel and, therefore, to
a permanent bulging, which ls undeslrable.

Ellipsoid with three different axes.- A general ellipsoild is a kind
of a shell which probably will not occur as part of a pressure cabin.
However, its membrane forces are easlly computed and may give an ides
of what may happen In other shells of noncircular cross section.

Consider an ellipsold having the three half-axes a > b > ¢ and
being subjected to sn internal pressure p. In order to find the
membrane forces, establish relations between them and those in a sphere
of radius b under a certain load. This follows the same lines as the
theory for the double bulkhead in the section entitled "Bulkhead for
Double Cylinders."

In rectangulsr coordinates x¥*, y*¥, and 2z* +the sphere has the
equetion

x*2 4 y¥2 4 z¥2 = p2

end in coordinates x, ¥y, and 2z +the equation of the ellipsoid is
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As surface coordinates on the sphere the angles @ and 6 are used
as shown in figure 33. Through the relations

each point of the sphere corresponds to a point on the ellipsoild. By
attributing the same values of ¢ and € +to both, a system of coordi-
nates is esteblished on the ellipsoid. Its lines @ = Constant are
parallel ellipses in horizontal planes. Its lines 6 = Constant are
ellipses in planes through the z-axis,

The shell element on the sphere has the ares

dA* = a dfa sin ¢ af

end its projections on the coordinate planes are

dAy* = dA* sin @ cos 6

dr* sin @ sin @

A"
dA,* = aA* cos ¢

The projections of the corresponding element of the ellipsoid are

c *
dhy = ¢ dAy

= & *
ahy = 25 any
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Multiplying this by p yields the compénents of the force p dA acting
on that element. The corresponding forces on the sphericel element sre
then

PX* d.A*

b
7 P dAy

] o’

P % dA* gin @ cos 6

Py*dA*=PdAy

=D %? dA* gin @ sin 6

p dA,

olo’

Pz* dA* =

AT
= P o dA™ cos )

From these relstions asre found px*, py*, and pz*, the loads per unit

area of the sphere, in directions x¥*, y*, and z*. They are comnected.
with the usual components, X* in direction 6, Y* in direction ¢,
and Z¥ in the radial direction by the formulas:

X* = 'Px* sin 6 + py* cos 6

T* = (px* cos 6 + p,* sin 6) cos § - p,* sin §

¥ cos @

z* = (px* cos 6 + py* sin 9) sin § + p,
Introducing Px*’ Py*’ and pz*, they yielad:

x* =2 E(E - 2) sin ¢ sin 26
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* . B c,ac_,8) _ cfa b
Y -Ecos¢sm¢[(-g+-b—2—zc)-b(b-a)cosQB]

= Y, + ¥p cos 26

Z*=%E_%+<-:—+:—;—2%) sin2¢~%(—:-—§) sin®g cos 29]

= Zo + Zp cos 26

The corresponding membrane forces msy be found from well-known formulas
(reference 2, pp. 37 to 39). They are:

* _pg pefa D
N¢ =35 ( a)cosEB
Ne*:%E—b+ (b_c+-8.‘b—c- 2%) sinzﬂ + P?C(%_g_) cose¢ cos 26

x ©pcfa b .
N¢9 =?(E-E) cos¢81n 26

To find the forces in the ellipsoid, the ratio of the corresponding line
elements is needed. The results are mentioned only for the three points
A, B, and C.

At the point A @ = 90°, 6 = 0°, and

2
_E_PLE_E)
Kg == zb(b a
_pf _=ac? 2
_E _b2 a

fl

rf
P e

1
U‘In
N} o
+

(¢]
ml\) n
N’
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pb(bc ac ab)
Npg = =={— + — = —
6 2c\a b c
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At the point B @ = 90°, 6 = 90°, and

=

I
nﬂ$§
o~

+

|2
ol o

]
Rl P
~_

2 2
= Bt a8 _ &
-Bhe 2 2)

At the point C ¢ = 0° and @ may have any value. When 6 = 0° is
asgsumed arbitrerily, then N¢ lies in the xz-plane, and Ng; in the

yz-plane, and the internal forces are:

2 2
g P_C(l_a_+a_)

2 2 o2

2 2
N =P£(l..b_.+b)
® =2 a2 o2

1f (82 + v2)c® < 8Pv2, the force Ny &t the points A and B becomes
a compression, The other four formulas always yield positive forces
when a 2 b 2 c. These results may serve as a first orientation of what

is to be expected in shells of noncircular cross section under the
action of an internsl pressure.
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PIATE PROBIEMS

Stresses in Thin Flst Sheets

Plane plates are not very desirable as parts of the wall of s pres-
sure vessel, but it often is not possible to avold them. Therefore, the
stresses set up in them by a leteral pressure Pp will be considered
here,

If such a plate were thick enough, it might carry its load by
bending stresses as does the reinforced concrete floor sleb of a
building; however, the skin of an airplane is much tooc thin to carry
an apprecieble load with tolerable bending stresses, Its stress system
is a superposition of bending stresses and of the stresses in a f£lexible
skin.

The subject of this section will be such a thin skin of rectangular
shape. Its stress problem is essentially nonlineer. In two dimensions
it is so involved that all theoretical end experimental effort spent
on it up to the present is still far from giving a complete answer to
all questione which the engineer might ask. Therefore, a discussion is
first presented for the one-dimensional problem which, in many cases,
will give useful information for practical purposes and beyond that will
show the general features of the stress system present in the two-
dimensionsl case,

Thin sheet stressed in one dimension,- Consider a thin plate as

shown in figure 3%, In the x-direction it has the span 1, and the
sides x = tZ/E are supported in such a way that not only the deflec-
tion w but also a displacement wu In the x-direction 1s prohibited.
In the direction of the y-axis the plate is supposed to be long enough
to make the conditions at the shorter sides immaterial,

For the purpose of stress analysis cut a strip of unit width out
of this plate. Because of the end conditions, the lateral load p will
produce a direct stress o along the strip, vwhich is necessarily
independent of x, If the deflection w 1is large enough, this stress
will be capeble of carrying the load.

This can be seen on an element of length dx cut from the strip
(fig. 35). The condition of vertical equilibrium is:

ot d(dw) + pdx =0
ax b
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It yields the relation
&P

which indicates that the strip must deflect into & common parsbola:

with a maximum at x = O:

_ni2
f s (2h4)

The horizontel displacement in the direction of increasing x may
be called u. The strain in the strip is then

2
€_92+i(ﬂ)
dx 2\dx
_G
°E

At the center x =0, u =0 from symmetry. At the support
X = 2/2, therefore,

u = uy
_a 1 2/2 dw 2 dx
ERTAN
_ al p213
“25_14.80%2 (25)

S8ince an unyielding support u, = O was assumed, this equetion may be
used to find o for a given load:

. LJ|EtiR
2\ 5
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From equation (24) the final expression for the deflection may be found,
in particular that for the maximm w=f at x = O:

These two formules represent nonlinear relatiomns, owing to the quadratic
term which represents the influvence of the deflection w on the strain e¢.
If this term should be neglected, as it is in meny other cases, no
reasonable result at all would be reached. The nonlinearity is, there-
fore, an essential feature of this problem,

Since the plate deflects, there will be a bending moment

2
g1 &¥

M
axe

=5

S

2
ot

_ 42 \3, 3E2pt2
6 12

This is incompetible with the assumed support and hes been neglected in
the preceding formulas, but this may safely be done if M 1is small as
compared with the moment p12/8 which would be necessary to carry the
load by beam sction. This condition may be brought into the dimension-
less form:

Bl
plk 16

For & pressure cabin with p = T psi and duralumin with E = lO7 psi
this ylelds

i 1
L e =
1 50

For the airplane, the assumption of unyielding supports goes too
far. The edges x = Constant of the plate are kept apart by stiffeners
in the x-direction. When they are not riveted to the skin, the problem
is still one-dimensional and may be represented by a flexible strip and
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a strut as shown in figure 36. The flexible strip is exposed to the
load p eand deflects under it; its ends are kept apart by a strut of
cross section Aj;, which has a compressive force N = -ot; the supports

are such that they allow the corresponding elastic deformation of the
bar.

When the cross section of one stiffener is A, and the distance
between stiffeners is d, then the area A; = A/d corresponds to a

strip of unit width of the plate.

When the horizontal displacement u i1is assumed to be zero at x = 0
(midspan), equation (25) may sgain be used for the displacement u, at

the end, but now uy, must correspond to the fact that the strut becomes
shorter by N1/EA;:

Introducing this into equation (25),

2
R

for the stress 1n the plate. The greatest deflection follows then from
equation (24):

1 3f3p7 3 1
f—h " \/1+A1 (260b)

Comparing these two formulas with those which were obtained for
nonyielding supports, it is seen that they become identicel for Al — o,

Since t/Al 1s more likely to be equal to 1 than O, the assumption of

nonylelding supports may lead to errors of about 25 percent, overrating
the stress and underrating the deflection. It seems, therefore, not
worth while to spend much effort on the two-dimensional problem if this
effect 1s not teken into account. However, the simpler formulas are
good enough for estimating the order of mesgnitude of o and £ and
for discussing the influence of the bending stiffness of the plate.

The formulas (26a) and (26b) are sufficient if the sheet panel is
part of a flat bulkhead. But 1n most other cases the wall, consisting
of* the sheet and its stiffeners, has to transmit an internal force such
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as Ny or Nj explained in the section entitled "Circular Cylinder."

These forces may be due to the over-all bending of the fuselage, to the
action of the Iinternal pressure on other parts of its wall, and to other
causes. When the sheet is flat and bulges out, the distribution of this
force on sheet and stiffeners is no longer govermed by the formulas (5).
It may be found by adding en axial force P to the strip and strut
system of figure 36 (see fig. 37).

If o again indicetes the stress in the sheet, the force in the
strut is

and the horizontal displacement at x = 1/2 must be

u =—R.l—
o EEAl
Equating this to the expression (25),
2
a31+;‘—)-c2A£--Eleé—=o (27)
1 1 2kt :

This may easily be solved in any gi%en case, The deflection' f follows
then from equation (24),

Some resulte are shown in figure 38 in dimensionless varisbles. The
values for the parameter pZ/Et have been chosen as rether extreme in
order to cover the whole field of practical interest. For most of the
diagrams, t/Al = 1 bhas been assumed, but one of them shows the trend

for & variation of this parameter,.

The diegrems show the influence of the force P. They emphasize
that a solution of the two-dimensional problem which disregerds this
influence cennot yield more than a rough approximetion of the resl air-
plane problem, even 1f it were an exact solution of the simplified
problem,

Thin sheet stressed 1n two dimensions.- Assuming a sufficiently
thin plate, the formulas developed in the preceding section are exact
for infinitely long rectangles. It is probable that they will yield
good results 1f the ratio of the sides is 1:4 or even 1:3, but when
the rectangle approaches a square, they become inapplicable.
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To find out how the results must be modified in such cases, consider
a square plate framed by four equal stiffeners (fig. 39). When the plate
bulges out under a lateral load p, stresses o will be set up in two
directlons, which are denoted oy and Oye The stiffeners will receive

compressive forces, The plate in their immediste vicinity must have the
same strailn and hence a compressive stress, The distribution of Oy

along one of the edges must, therefore, be as shown on the figure.

At the center of the plate Oy = Gy. When two strips are cut out

along the coordinete axes, each one will carry one-half of the load p,
and the curvature will be half of thet which would follow with this
same o from the one-dimensional theory. When the horizontal strip is
followed toward the right edge of the plate, the stress Oy will

decrease and finally become negative, Where it passes zero, the one-
dimensional theory will yield the correct curvature, and closer to the
edge the curvature of the square plete will be greater than that of a
single strip. A single strip was seen to deflect as a parsbola, The
profile of the square plate must, therefore, be far from a sine curve,
and results computed on this assumption must, therefore, be interpreted
with some reserve,

When a diaegonal of the plate is followed o0, always equals Tys

but both stresses decrease the father away they are from the center.

The curvature in both directions must, therefore, become grester, and
a sharp fold mey be expected toward the corner. But at least there is
a region where o, and Oy become negetive and are no longer ceapable

of carrying any losd et all. Here even the thinnest plate must have
egssential bending stress. The thinner the plate 1s, the smaller this
reglon will be, and the shaerper the curvature will become. It follows
that the highest stresses will occur on or near the corners. They may or
may not be responsible for the ultimate load of the plate, depending on
the possibility of smoothening the peak by local plastic flow, but they
are certainly responsible for permenent deformations which produce thst
qullting of flat panels which makes airplanes unsightly and is not much
appreciated by the aerodynsmicist,

There is little numerical informstion available on square and rec-
tangular plates. Some papers (references 6 and 10) are mentioned in the
references of this report, One of them, reference 6, contains rather
complete material for plates with unylelding supports (fig. 34); however,
this paper is based on the assumption that the profiles of the deflected
plate along both axes are sine curves, In particular, thils assumption
is also made for the lengthwise profile of long plates (1:4), where it
leads to an overrating of the influence of the support at the short
sides, The results for the long plate, therefore, do not check with
the one-dimensional theory. However, the two-dimensional problem is
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so complex that a critical use of the diagrams of Moness (reference 6)
is the best that can be recommended at this time,

Thermal Stresses in Window Panes

The window panes of a pressure cabin are not only exposed to the
difference in pressure between the interior of the cabin and the free
atmosphere but glso to a considereble difference in temperature. The
bending stresses due to the pressure may easily be found from text-
book formulas, but the thermal stresses require some discussion.

Consider a plate of uniform thickness, simply supported along its
edge, Assume that no load is applied but that there is a difference T
between the temperatures of its faces. When the temperature is increased
by T, a positive strein

€ = ol

will occur in every directlon, « being the coefficient of thermsl
expansion. When only one side of the plate is heated, ¢ is the dif-
ference in strain between both sides, and this difference leads to a
curvature

of
%

ct{m

in every direction. The middle surface of the plate is then deformed
into a small part of a sphere of radius 1/k.

IT the plate is circular, this is all that happens. The window
will slightly deflect to the warmer side, and no thermal stresses will
be set up. But if the plate is rectangulsr, the deformed shape will
no longer fit on the support, and, in order to make it fit, the support
will exert forces on the plate and these forces will produce bending
stresses.

Formulas for the bending moments which correspond to these stresses
will now be esteblished and discussed. In doing so, the following nota-
tions will be used (fig. 40):

X,¥ coordinates
w deflection

M&,My bending moments

ng twisting moment
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Ky curvature in x-direction (§33>
3x°
Et3
K bending stiffness |—————r
12(1 - v2)

The stresses and deformation due to heating of the upper face of
the plate will be buillt up in three steps. The first one has slready
been done, namely, the application of the temperature difference to the
free plate, resulting in & uniform bending without stress, )

In the second step this deformation is completely removed by applying,
along all four edges of the plate, constant externel bending moments My
of appropriate gize. They produce bending moments

My = My =M,

in the plate which are constant everywhere and in all directions. Now,

the curvature &k, of the plate is related to the bending moment by the

well-known formula:

Ky = = Ez;TiL;ETCEX - vMy)

In this case, it ylelds

o = o
K(1 + v)

To remove the thermal deformation, k, must be made equal to -am/t
end therefore

Mo = K(1+v) &

Under the combined asction ot the temperature T and the edge
moments M, the plate is perfectly plane and may be attached to its

supports, Now the third step may be done: The condition of simply
supported edges must be realized and the edge load M, compensated by
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adding an edge load -M,. This is a problem of plate theory and may be
solved in the following way:

When there is no lateral load, the deflection w of the plate must
satisfy the well-known differential equation (reference 11):

dly . dlty 3t

2 +
3xt dx2dy2 Byu

Introducing the sum of the two bending moments

M=M, + My

es an auxiliasry variable, this equation may be split into two equations of
the second order:

2 2
oM aM_O

— +

o2 'a—y-z— = (28a)
v P M

N + > = - T ) (28p)

These equations can be solved one after the other because & boundary
condition can be found for each one.

Consider, for example, the edge x = a/2 of the rectanglie. The
bending moment -M, is applied there and

My =

1s obtained. Since the edge is supported, w = 0 <for all values of ¥y
and, hence, also

3%

2 X=0

3y?
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Introducing this into the elastlc law

Mo = <82w )
* a2 ¥R
(29)
o, aﬁw
ay2 )
it can be concluded that My = -YM, on this edge and, hence, that
M= -(1+ VM, (30)

A similar reassoning may be made for the three other edges.

The solution of equation (28a) with the boundary condition (30) is
extremely simple. It is & constant, M = -(1 + v)M,.

Now equation (28b) mey be attacked. Introducing the result just
obtained,

P , Pw Mo
a2 o2 K

and the boundary condition is, of course, w = O,

This differential equation with this boundary condition is known
in the theory of torsion of a bar having rectangular cross section. All
that is necessary is to translate the solution known there into the

terminology of the plate problem,

The solution is:

- nnx nxy
) e e S D (31)
K\ 8 2 4 3 p, BEe
1,3,5’. .e n COS EBT
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One may easily verify that this expression satisfies the differential
equation and that w=0 for y = tb/2. At the other two edges,
- x = ta/2, equation (31) yields:

The sum in the parentheses happens to be the Fourier series representa-
tion of the function

22

w2\& 2

valid in the interval -b/2 Sy £ b/2, and, therefore, the expression
in parentheses vanishes at every point of the two edges =x = Constant

. of the plate. This proves that the solution really satisfies the
condition w = 0 on all four sides of the rectangle.

- The bending moments can now be found easily by introducing the
golution (31) into the elastic law (29):

-l nmx nxy
M1-v) B =5~ cosh 5~ 8§~
My = -Mp|v + — g (-1) -
nx
1,3,... n cosh b
W1 - v) © n-1 cosh 9%5 cos E%l
M, = -M, |1 - ———— E (-1) 2
Y T nxa
1,3,..- n coshﬁ'

These are the bending moments produced in step three. To obtain the
bending moments for the original problem, the moment M, of the second

. step must be added; the first step mskes no contribution to the stresses.
When M, is expressed by the temperature difference T, writing
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My = K(1 + v)g_é[l—
_ EoateT
12(1 - v)
finally
1 o -1 cosh 2%5 cos E%Z
M, = — Eat2T |~ - E (-1) ©
X
3x n .
1,3,... n cosh ==
o n~1 nwx nmy
== cosh —— cos
My = = Eat2r E (-1) 2 b L)
3x 1,35... " n cosh 222
2b

The solution would not be complete without having the twisting moment Mky'

Step two does not meke a contribution to it, but 1t can be obtained from
equation (31) alone, using the formula

= ~K(1 - v)
ey dx Oy
There is obtained
o 2l sinh B gin 2
Myy = = Bat2T (-1) 2 L
3n 1,57, nna

n cosh —
©o%% Zp

The formulas for the moments are the solution of the problem as it
was formulaeted at the beginning. It is now necessary to discuss this
result and to draw some practical conclusions from it.
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At the edges y = tb/2

cog — =0

for all odd integers n and hence

M, = J.ie' EatoT

That the moment M& vanishes corresponds to the assumed simple support.
That My does not do so is due to the fact that the edge is kept straight
in spite of the applied temperature difference.

At the edges x = ta/2 there is the corresponding result

but to obtain it the Fourier series

o n-1
2

§ 1 nrxy
(—l) 'I_l. cos T

l,3,a-u

must be added up which yields =n/4 for all points of the
interval -b/2 < y S b/2.

For interior points of the plate, the series appearing in the
formulas My and My has very good convergence, For the center of

a square plate,

My = My

1
K Eaqt2T

can be found easily.
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The mogt interesting part of the solution is the formula for the
twisting moment M&y' When x < a/2, the quotient of the two hyperbolic

functions decreages exponentially with increasing n and produces a
good convergence of the series; but on the edge x = a/2 this beneficial
influence 18 lost and the series converges slowly., If x = a/2 is

kept and the corner y = b/2 is approached, the series becomes

o

ST lemge > 2

1’3’3-0 l,3{cca

and this series 1s dlvergent or, if this expression is admitted, yields
the value «. This singularity oi the twisting moment which, of course,
appears et sll four corners, is of practical lmportance. It is true
that reel obJects always find a way to avoid infinite stresses, Here
the finite thickness of the plate, tbe finite wldth of the zone to which
the reactions are applied, and the elastic ylelding of the support may
act in this way, but, nevertheless, the singulerity in our solution
reveals the fact that stresses near the cormer will be extremely high
and that it would be wiser to round the corners liberally than to trust
the good will of the structure.

Buckling of Cylindrical Panel

The metal skin of the pressurized cabin is subdivided into rec~
tangular panels by rings and axial stiffeners (stringers). In every such
panel, the wall is subjected to a hoop stress 6¢ due to the cabin
pressure p. Additionally, there may be an axial stress o, (tension
or compression) and a shear stress T (fig. 41). The hoop stress oy

increases the shear stress T required for buckling in the presence of
a given 0Ox.

For this buckling problem, Kromm (reference 7) has worked out two
diagrams which give the critical shear T as a function of the hoop
stress of assuming elther oy =0 (case "a", fig. L43(a)) or

Oy = c¢/2 (case "o", fig. 43(b)). Of course, the ratio between the two
stresses oy and o¢ mey have any other value between or beyond these

limits, but, since the influence of 0y on the critical shear is not
large, the choice made by Kromm is sufficient.

Kromm's paper gives only a short description of the method used for
solving the problem, referring for more detalls to his earlier papers on
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stability problems in cylinders. A still shorter outline will be given
here of the laborious procedure and an explanation of the diagrams
resulting from it.

The object of the graphs is a rectangular pasnel, cut from a circular
cylinder of radius a and supported on its edges. Its length is supposed
to be much greater than its width so that the buckling is not influenced
much by the support on the curved sides.

When this panel is subjected to the csbin pressure p 1t will bulge
out, again forming & cylindrical surface, but with a smaller redius r <a.
This radius r may easily be found 1if the lengthwise edges of the panel
are fixed. In the deformed state (fig. 42) a simple consideration of
equilibrium yields for the hoop stress the relation

= &L
g =% (32)
On the other hand, the length of the arc of radius r and chord b is

2
A ='b<} + b )
ohre

the length of the same arc before deformation is

2
b
b{l +
° ( 2ha2>

o~
Il

and hence the hoop strain is

€6 =%

When Oy = 0 (case "a“),
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Equating this to the value from eguation (32),

In case "b," E has simply to be replaced by Z2E/(2 - v).

In connection with the buckling problem, the relations between p
and: r must be expressed by a certain set of dimensionless variables
used there, Using Kromm's notation, the curvature of the undeformed
cylinder is described by the parameter

12(1 - v2) bt

Wy = (33)
° ﬂ}"' a2‘b2
thet of the deformed shell, by
_12(1 -v?) ¥
ﬂh' l'abz
and the pressure ©p, by the parsmeter
2 wh
- 2@ -42)/2e (34)
R
The relation just found between p and r reads then in case "a":
W(w-%)=576‘y3kp
= 1.035k,
and in case '"b":
@o-a) - - Pos

0.8801gP
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After this preparation, the buckling problem for a cylinder of
radius r may be solved. This may be done by either of the two standard
methods. The differential equations for the components u, v, and w
of the displacement may be formulated and solved, or the expression for
the variation of the potential energy may be established and equated to
zero for every possible variation u, v, or w of the displacements
compatible with the boundary conditions. In both cases the displace-
ments are introduced as double Fourier series, and the buckling condi-
tion finally assumes the form that a determinant of infinite order must
be equal to zero. For the numerical evaluation, this determinant is
approached by a section of moderate size, not necessarily situated at
its upper left corner. The diagrams in figures 43(a) and 43(b) have
been computed in this way.

For the application of these diagrams, it is necessary to know the
boundary conditions assumed. Since the plate was supposed to be long in
the x-direction, no conditions were fixed for the curved edges
x = Constant. On the straight edges, four conditions must be given.

The following choice was made: Displacement parallel to the edge u = o,
radlal displacement w = O, clamping moment (see fig. 8) Mg = 0, and

gdditional hoop stress c¢ = 0.

The first three of these conditions appear to be reasonsble st First
slght. Alsoc the last one is quite usual in buckling problems of this
kind, but it seems to contradict the assumption of unylelding supports
made for the determinastion of r. This contradiction may be easily
resolved. The underlying idea is that the panel is part of the wall of
a cylindrical fuselage and has many neighbors which are in the same
situation. When the pressure p 1is applied to these panels, they will
gll develop the same hoop stress og. Although the stringers usually
have but little bending stiffness, they cannot deflect in the v-direction
(fig. hl), because the forces c¢t applied to them from both sides are in
equilibrium, When buckling occurs, the situation is quite differemt. A
system of folds is formed in each panel, and with them additional hoop
stresses c¢ are set up. If the stringer were very stiff, corresponding
forces ogt would be transmitted to it, and they would not be the seme
from both sides but would pull at some places to one side and at other
Places to the other side. When the stringer is weak, as is usual, it
will deflect so much that the stresses become almost zero, and the
safest assumption for the determination of the buckling stress is the
one made,

The use of the diagrams may now be described. From the given data
q&% and kp are computed according to equations (33) and (34) and

located in the diagram. The values kP are found st the left side of
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the graph and refer to the more-or-less horizontal curves. For \Iab,

some values are given along the upper edge. The curves to which they
refer are almost vertical and jJoin st their lower end, more or less

tangentially, a vertical line bearing the same number on the & scale.
From this relstion it 1s easy to interpolate more curves {EE and to

find the values wa for those curves which are not numbered in the

graph. It also eppears that in the right-hand half of the diagrem the
qag curves are practically identical with the vertical coordinate lines,

From the point which corresponds to the given values of kP and

V“b follow a horizontal line toward the left and read there T/o*.
When multiplied by the reference stress

¥ 1'!2 E 't2
0" = e ————
31_v2b2

it yields the critical value of the shear stress T.

If, incidentally, oy corresponds to ome of the two cases "a

or "b," it is necessary to consult only one of the diagrams. For
other values of oy it is necessary to use both and then find the final

value T by interpolation. Since the influence of o0, 1s not great,
even an extrapolation will be possible, within moderste limits.,

Stanford University
Stanford, Calif., September 7, 1950
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Figure 1.- Cylindrical shell.

Figure 2.- Part cut from a cylindrical shell subjected to intermal
pressure p.
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Figure 3.- Part of cross section through a cylindrical shell with stringers.
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Figure L.- Factor k for longitudinal stress in skin of stiffened shell.
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Figure 5.- Cross section through a pressurized cabin consisting of two
cylindrical shells.

Figure. 6.,— Detail of figure 5: Forces at junction of two cylinders.



NACA TN 2612 69

> X

-p aiunp-uﬁ

P

i
O s vy o

2r |7

Figure 7.- Longitudinal section through cylindrical shell and reinforcing
rings.

Figure 8.~ Element of cylindrical shell, showing internal forces.
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Figure 9.~ Extensional rigidity of shell against cross section of stringers.
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(b) Rings far apart, light stringers.

Figure 10,~- Typical distribution of bending moment My and hoop force N¢
in shell between two rings.
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Figure 11.- Yielding connection between shell and ring.

Figure 12,.- Cylindrical shell having a door opening.



Figure 13.- Longltudinal force Ny and hoop force N¢ in a cross section
through a cylindrical shell having a door opening,
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Figure 1L.~ Shell of revolution.
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Figure 15.~ Axial section through a shell of revolution.
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Figure 16.- Element of a shell of revolution.

(a) Complete structure.

&cp
|

Fx

ll

N,L_‘_/W@' |
A
Ne

P — —— —— — ——

e

(b) Cylinder, bulkhead, and ring taken apart.
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Figure 17.- Axial section through a cylindrical shell and a bulkhead.
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Figure 18.- Meridional force N¢ and hoop force Ny in two different

bulkheads. Upper half, extremely flat shape; lower half, sufficiently
dished shape.
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Figure 19.- Notation for an elliptic meridian,
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Figure 20.~ Meridional force Ny and hoop force Ny in two ellipsoidal
bulkheads.




NACA TN 2612 17

] ]

o |
|
1

(a) Parts before pressure is applied.
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(b) Exaggerated scheme of deformation when pressure p is applied to
cabin at left of bulkhead.

Figure 21.- Continuous cylindrical shell having an inserted bulkhead.
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Figure 22,- Possible shapes of bulkheads.
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Figure 23.- Forces between parts of the bulkhead shown in right-hand sketch
of figure 22, '
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Figure 2L.~ Meridian of a bulkhead, built up from circles.
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Figure 26,- Bulkhead for double cylinders, consisting of two ellipsoids
(left), and corresponding spheres (right).
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Figure 27.- Forces acting on the ring between two spheres shown in figure 26.

Figure 28.- Affine shell elements,
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Figure 29.- Sign convention for forces transmitted from spherical shells
to connecting ring.
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Figure 30.- Element of ring shown in figure 29.
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Figure 31.- Distribution of circumferential force Ng and normal force N¢
at edge of ellipsoidal bulkhead shown in left half of figure 26.
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Figure 32.- Nose of a pressurized cabin.

(a) Spherical shell.
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(b) Ellipsoidal shell.

Figure 33.- Sketches of shells.
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Figure 3li.- Plate strip subjected to lateral pressure,
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Figure 35.- Side view of an element of a plate strip.
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Figure 36.~ Plate strip undergoing large deflection and straight stiffener.
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Figure 37.— Same system as in figure 36, but subjected to an additional
horizontal load.
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Figure 38.- Stress and deflection of plate strip, plotted against axial
load, for three different lateral loads and (in central figure) for
three ratios of skin to stiffener.
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Figure LO.- Rectangular plate and plate element,
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Figure 41.- Cylindrical panel.
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Figure L2.- Section through cylindrical panel before and after application
of internal pressure p.
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Figure 43.- Diagrams from reference 7 for buckling load of cylindrical
panel shown in figure L1,
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